The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2X 1 1 1 2X X 1 X 2 1 0 X 0 X 2X 0 3X X 2 X+2 2 X+2 2X+2 3X+2 2 X+2 0 X 2X 3X 0 2 X X+2 2 X+2 2X 3X 2X+2 3X+2 2X+2 3X+2 0 2 X X X+2 2X+2 X+2 2X 3X+2 3X 2 2X 2 X+2 2X X 2 X+2 3X+2 X+2 2X+2 X 2X 3X 2X+2 2X 3X+2 2X X X+2 2 3X+2 2X 3X 2X 3X+2 X+2 3X X 3X 2X+2 2X X X+2 0 0 X X 2 X+2 X+2 2 2 3X+2 X 2X+2 0 3X X+2 2X 0 X 3X 2X+2 2X+2 X 3X+2 2X+2 2X+2 X+2 X+2 0 2X X X+2 2X 2X 3X+2 2X+2 3X 0 X 3X 2X+2 2 X+2 0 X 0 3X+2 X+2 2X 2 0 3X 2 3X 2X 2X+2 3X 3X+2 X 3X+2 0 2X+2 X 2X+2 3X+2 3X+2 3X+2 2X 2X+2 2X X 2X+2 0 X 3X+2 2X+2 0 0 0 0 2X 2X 2X 0 2X 0 2X 2X 0 2X 0 0 2X 2X 0 2X 0 0 0 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 0 2X 2X 2X 0 2X 2X 2X 2X 0 0 0 2X 0 2X 0 2X 0 0 2X 0 0 2X 2X 2X 2X 2X 2X 0 0 0 0 0 2X 0 0 2X 2X 0 0 0 2X generates a code of length 76 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 72. Homogenous weight enumerator: w(x)=1x^0+143x^72+156x^73+277x^74+312x^75+422x^76+232x^77+285x^78+32x^79+62x^80+28x^81+73x^82+8x^83+12x^84+4x^86+1x^142 The gray image is a code over GF(2) with n=608, k=11 and d=288. This code was found by Heurico 1.16 in 0.516 seconds.